RSS

GERAK HARMONI SEDERHANA

Gerak harmonik sederhana adalah gerak bolak - balik benda melalui suatu titik keseimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan.

JENIS, CONTOH, DAN BESARAN FISIKA PADA GERAK HARMONIK SEDERHANA

Jenis Gerak Harmonik Sederhana
Gerak Harmonik Sederhana dapat dibedakan menjadi 2 bagian, yaitu :

  • Gerak Harmonik Sederhana (GHS) Linier, misalnya penghisap dalam silinder gas, gerak osilasi air raksa / air dalam pipa U, gerak horizontal / vertikal dari pegas, dan sebagainya.
  • Gerak Harmonik Sederhana (GHS) Angular, misalnya gerak bandul/ bandul fisis, osilasi ayunan torsi, dan sebagainya.

Beberapa Contoh Gerak Harmonik Sederhana
  • Gerak harmonik pada bandul

Gerak harmonik pada bandul
Ketika beban digantungkan pada ayunan dan tidak diberikan gaya, maka benda akan dian di titik keseimbangan B. Jika beban ditarik ke titik A dan dilepaskan, maka beban akan bergerak ke B, C, lalu kembali lagi ke A. Gerakan beban akan terjadi berulang secara periodik, dengan kata
lain beban pada ayunan di atas melakukan gerak harmonik sederhana.
  • Gerak harmonik pada pegas

Gerak vertikal pada pegas
Semua pegas memiliki panjang alami sebagaimana tampak pada gambar. Ketika sebuah benda dihubungkan ke ujung sebuah pegas,
maka pegas akan meregang (bertambah panjang) sejauh y. Pegas akan mencapai titik kesetimbangan jika tidak diberikan gaya luar (ditarik atau digoyang).

PERSAMAAN, KECEPATAN, DAN PERCEPATAN GERAK HARMONIK SEDERHANA

Persamaan Gerak Harmonik Sederhana
Persamaan Gerak Harmonik Sederhana adalah :

Y = A sin \omega\ t

Keterangan :
Y = simpangan
A = simpangan maksimum (amplitudo)
F = frekuensi
t = waktu

Jika posisi sudut awal adalah θ0, maka persamaan gerak harmonik sederhana menjadi :

Y = A sin  \omega\ t + \theta_0
Kecepatan Gerak Harmonik Sederhana
Dari persamaan gerak harmonik sederhana Y = A sin  \omega\ t
Kecepatan gerak harmonik sederhana :
v = \frac{dy}{dt} (sin A sin  \omega\ t)
v = A \omega\ cos  \omega\ t
Kecepatan maksimum diperoleh jika nilai cos \omega\ t = 1 atau \omega\ t = 0, sehingga : vmaksimum = Aω
Kecepatan untuk Berbagai Simpangan
Y = A sin \omega\ t
Persamaan tersebut dikuadratkan
Y^2 = A^2 sin^2 \omega\ t, maka :
Y^2 = A^2 (1 - COS^2 \omega\ t)
Y^2 = A^2 - A^2 COS^2 \omega\ t ...(1)
Dari persamaan : v = A \omega\ cos  \omega\ t
\frac{v}{\omega} = A cos  \omega\ t ...(2)
Persamaan (1) dan (2) dikalikan, sehingga didapatkan :
v^2 = \omega\ (A^2 - Y^2)

Keterangan :
v =kecepatan benda pada simpangan tertentu
ω = kecepatan sudut
A = amplitudo
Y = simpangan

Percepatan Gerak Harmonik Sederhana

Dari persamaan kecepatan : v = A \omega\ cos \omega\ t, maka:
a = \frac{dv}{dt} = \frac{d}{dt}
a = -A \omega^2\ sin \omega\ t
Percepatan maksimum jika \omega\ t = 1 atau \omega\ t = 900 = \frac \pi 2
a maks = -A \omega^2\ sin \frac \pi 2
a maks = -A \omega^2\

Keterangan :
A = amplitudo

sumber : wikipedia

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 komentar:

Poskan Komentar